
 

 

2.2.1.2. Defining understanding requirements  

Practical guidance – cross-domain and maritime (maritime specific guidance is 
indicated in blue) 

Authors: ALADDIN demonstrator project 

Overview of approach 

Understanding is the key to enable RAS to interpret the data received from sensors about 
the system’s states and operational environments and make informed decisions on actions 
to be taken to reach desired goals. Therefore, when defining the understanding 
requirements for an autonomous system, we need to consider: 

1. Consideration of goals and associated system states and features 

2. Understanding the state of system 

3. Understanding the operating environment 

4. Associated metadata 

In this Body of Knowledge entry, we consider the understanding requirements of 
autonomous fault diagnostics systems and in particular for MAS as the domain-specific 
example studied in the ALADDIN programme, with this content highlighted in blue 
throughout. However, the general considerations presented here share much in common 
with other robotic domains and thus the key concepts should be transferable. 

1. Consideration of goals and associated system states and features 

The objectives of RAS operations form the success criteria and the RAS understanding 
requirement to complete its mission. Furthermore, the goals also influence the system’s 
capabilities and sensing abilities (see 2.2.1.1), thus affecting its associated system states and 
available features that can effectively represent such states. Additionally, real-world 
environments (e.g. maritime) can be highly dynamic and can pose various influences on a 
RAS such as an autonomous underwater vehicle (AUV). In many cases, the complex 
environment can lead to observations that vary significantly throughout a standard 
operation and such variations can be challenging to interpret and understand. Therefore, 
the understanding of system states needs to be thorough to capture normal variances 
imposed by the RAS itself and its dynamic operating environment to be able to distinguish 
anomalous behaviours and faulty states. We can also deduce indirect features from direct 
sensing information using techniques such as system identification, to better suggest the 
system operating state. From the perspective of fault diagnostics, a well-established 
understanding of normal operating state can minimise the rate of false positives. 

AUV example: As the AUV example discussed in Section 2.2.1.1, an AUV is deployed to 
undertake a bathymetric survey of the seafloor, operating at a depth of 6000 m below the 
sea-surface. The understanding of this deliverable should be considered first, for example: 
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• What system parameters are to be understood? The system state parameters can 

include signals measured by AUV’s onboard system sensors as well as provided by 

external data sources.  

• Note that the system states/features can either be scalar values or multi-

dimensional matrices, depending on the sensor types. How to interpret complex 

sensing information provided by systems such as cameras? 

• What thresholds are to be set for these system state parameters? For instance, how 

much deviation of AUV depth is permitted for the AUV to achieve a satisfactory 

survey? 

• Are the data resolutions good enough to establish an understanding of the AUV’s 

states and its environments? 

• Are there any constraints from the environment (e.g. bathymetric features or 

currents affecting AUV localisation) and minimum requirement of water clarity that 

may influence the quality of the survey data and impose safety hazards to the AUV 

and its operating environment? 

• Does the AUV and/or the operator have accurate estimations of power 

consumptions and remaining battery state of charge, such that the mission can be 

accomplished with the AUV recovered safely? 

• What are the features that can be deduced to better represent the vehicle’s status? 

For instance, drag and lift coefficients can be determined for the AUV using its direct 

sensing, to indicate potential biofouling. 

 

2. Understanding the state of the system itself 

The robotic system requires an understanding of its own system state to operate safely and 
as intended to achieve the defined goals. In our AUV example, such an understanding can 
be established from appropriate interpretations of the signals from the AUV’s onboard 
sensors and virtual features deduced from direct sensing. As in Section 2.2.1.1, the 
understanding of the RAS state can be further developed in the following aspects:  

• critical items list and associated safety functions,  

• run-time monitoring to react to events or detect developing faults, and 

• long-term reliability analyses. 

Approaches established in reliability engineering, such as Failure Mode and Effect Analysis 
(FMEA) [1], can be applied to outline the elements of the RAS whose failure modes may lead 
to a degraded system performance and/or safety hazards to the RAS and its operating 
environment. It is critical to understand the potential consequences associated with 
different failure modes and to define appropriate mitigation actions to minimise risks for 
each element of the critical items list. The thresholds of determining critical failures should 
be clearly indicated to the RAS designers/operators and integrated with RAS internal safety 
functions. 

The state sensing data is also used for monitoring the system during an operation to react to 
events or developing faults (see the ALADDIN project). It is essential to understand the 
underlying characteristics presented in the sensing data which can reflect the RAS operating 
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status (i.e. whether it is in normal operation or has developed or is developing a certain type 
of fault - either known or unknown). Different approaches including model-based and data-
driven methods can be applied to infer the RAS operating state. Model-based methods are 
more suitable for systems where available data is limited and an accurate model exists for 
the RAS. For complex systems, data-driven approaches such as deep learning may show 
significant improvements in understanding the RAS states where significant prior data exists 
[2]. 

Additionally, understanding derived from the sensing and perception of a RAS system can be 
applied to studying the long-term reliability of a RAS. One example for doing this is by 
monitoring the shift in performance of a system (both software and hardware) as well as 
deviation in accuracy of the models or algorithms used for the RAS perception system over 
time. Long-term reliability analyses can also inform future designs and safety assurance of 
RAS. 

AUV example:  For AUV applications, we need to define the critical items list with clearly 
defined safety functions, based on the comprehensive understanding of the failure modes 
and their consequences. For instance, immediate recovery measures need to be taken when 
the AUV’s battery state of charge is critically low, where continuing the operation would put 
the AUV at an increased risk of being lost at sea. For run-time monitoring, the changes in 
drag and lift coefficients may suggested biofouling that can increase the AUV’s power 
consumptions, and consequently lead to reduced deployment time. For long-term reliability 
analyses, the gradually shifting battery open-circuit voltage vs state of charge curve over the 
AUV’s lifetime can suggest when the AUV battery has reached its end-of-life. 

3. Understanding the operating environment 

In addition to understand the system’s own state, understanding of its operating 
environment is also critical. Understanding the operating environment can be established 
through data from sensors onboard the RAS and external data sources (e.g. satellite 
observations, data from nearby platforms, either provided before the deployment or sent to 
the RAS during operation). 

It is important to extract the key information and features contained in the raw 
measurements of the operating environment. A reliable interpretation or understanding of 
this information by the RAS or its human operator helps in informed decision-making for the 
next steps. For instance, terrain-aided navigation and Simultaneous Localization and 
Mapping (SLAM) sensing can locate the RAS within its environment, which can be regarded 
as a basis for the adjustments of the AUV’s actuators.  

As indicated in Section 2.2.1.1, some payload sensors installed onboard a RAS can also 
indicate the states of the RAS and its environment. For instance, the temperature and 
salinity measurements by an AUV can not only be used to calibrate the AUV’s other sensors, 
but to suggest the status of its operating environment. Therefore, it is important to identify 
the areas of overlaps where better understanding of its operating environment can be 
established. 

From the perspective of fault-diagnostics, understanding the operating environment can 
potentially improve the fault-diagnostics accuracy on different faults. For instance, a high 
seawater temperature and increasing drag coefficient could suggest biofouling. However, it 
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should be noted it can be challenging for human operators to identify some fault types with 
the abnormal patterns distributed over multiple sensors readings in low magnitudes. Deep 
learning fault diagnostics approaches can potentially provide an improved understanding of 
the operating environment where complex measurements and features exist, hence, to 
achieve enhanced assurance of safety for the RAS. 

AUV example:  An AUV was deployed to measure oceanographic parameters such as 
chlorophyll levels, temperature, and salinity. However, during the deployment the operator 
had noticed that a few signals, including the battery voltage, state of charge and rudder 
angle, showed unusual patterns. Further investigation suggested that the AUV had 
experienced strong disturbances due to transverse ocean currents. The survey quality could 
have been compromised due the disturbances from the operating environment of the AUV. 
If the operator had never seen such an anomalous situation, it could be difficult to promptly 
identify the root cause. 

4. Associated metadata 

In addition to metadata detailed in Section 2.2.1.1, the following datasets are useful for 
development of fault-diagnostics tools for the safety assurance of RAS: 

• ALFA: A Dataset for Unmanned Aerial Vehicle (UAV) Fault and Anomaly Detection 

[3]. 

• A Fault Detection Data Set for Performance Bugs in Component-Based Robotic 

Systems [4]. 

• Robot Execution Failures Data Set [5]. 

• UTIAS Multi-Robot Cooperative Localization and Mapping Dataset [6]. 

• The Zurich Urban Micro Aerial Vehicle Dataset [7]. 

• AUV datasets: the SOCIB datasets of AUVs [8]. 

Summary 

In this Body of Knowledge entry, we define the understanding requirements for RAS from 
two perspectives (i.e. understanding the system state and the operating environment). We 
hypothesise that deep learning fault-diagnostics methods can be a solution for a RAS to 
understand the normal states and faults. Our work [2] conceptually verifies that, with 
accurate labelling of the training dataset, supervised learning can achieve high fault 
diagnostics accuracy for AUV. However, in practice, complete labelling can be prohibitively 
expensive or time-consuming. It is crucial to develop methods such as semi-supervised 
learning that can detect the fault types for RAS with partially labelled training datasets. 
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